Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383986

RESUMO

Yeast cells are extensively used as a key model organism owing to their highly conserved genome, metabolic pathways, and cell biology processes. To assist in genetic engineering and analysis, laboratory yeast strains typically harbor auxotrophic selection markers. When uncompensated, auxotrophic markers cause significant phenotypic bias compared to prototrophic strains and have different combinatorial influences on the metabolic network. Here, we used BY4741, a laboratory strain commonly used as a "wild type" strain in yeast studies, to generate a set of revertant strains, containing all possible combinations of four common auxotrophic markers (leu2∆, ura3∆, his3∆1, met15∆). We examined the effect of the auxotrophic combinations on complex phenotypes such as resistance to rapamycin, acetic acid, and ethanol. Among the markers, we found that leucine auxotrophy most significantly affected the phenotype. We analyzed the phenotypic bias caused by auxotrophy at the genomic level using a prototrophic version of a genome-wide deletion library and a decreased mRNA perturbation (DAmP) library. Prototrophy was found to suppress rapamycin sensitivity in many mutants previously annotated for the phenotype, raising a possible need for reevaluation of the findings in a native metabolic context. These results reveal a significant phenotypic bias caused by common auxotrophic markers and support the use of prototrophic wild-type strains in yeast research.

2.
Biochem Biophys Res Commun ; 690: 149250, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039781

RESUMO

The von Hippel-Lindau protein (pVHL) is a tumor suppressor involved in oxygen regulation via dynamic nucleocytoplasmic shuttling. It plays a crucial role in cell survival by degrading hypoxia-inducible factors (HIFs). Mutations in the VHL gene cause angiogenic tumors, characterized as VHL syndrome. However, aggressive tumors involving wild-type pVHL have also been described but the underlying mechanism remains to be revealed. We have previously shown that pVHL possesses several short amyloid-forming motifs, making it aggregation-prone. In this study, using a series of biophysical assays, we demonstrated that a pVHL-derived fragment (pVHL104-140) that harbors the nuclear export motif and HIF binding site, forms amyloid-like fibrillar structures in vitro by following secondary-nucleation-based kinetics. The peptide also formed amyloids at acidic pH that mimics the tumor microenvironment. We, subsequently, validated the amyloid formation by pVHL in vitro. Using the Curli-dependent amyloid generator (C-DAG) expression system, we confirmed the amyloidogenesis of pVHL in bacterial cells. The pVHL amyloids are an attractive target for therapeutics of the VHL syndrome. Accordingly, we demonstrated in vitro that Purpurin is a potent inhibitor of pVHL fibrillation. The amyloidogenic behavior of wild-type pVHL and its inhibition provide novel insights into the molecular underpinning of the VHL syndrome and its possible treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Doença de von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Doença de von Hippel-Lindau/genética , Fatores de Transcrição/metabolismo , Carcinoma de Células Renais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Genes Supressores de Tumor , Proteínas Amiloidogênicas/genética , Neoplasias Renais/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Microambiente Tumoral
3.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958982

RESUMO

Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.


Assuntos
Doença da Urina de Xarope de Bordo , Doenças Metabólicas , Humanos , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Amiloide/genética , Mutação , Proteínas Amiloidogênicas/genética
4.
Angew Chem Int Ed Engl ; 62(38): e202217622, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37266966

RESUMO

The vital role of metabolites across all branches of life and their involvement in various disorders have been investigated for decades. Many metabolites are poorly soluble in water or in physiological buffers and tend to form supramolecular aggregates. On the other hand, in the cell, they should be preserved in a pool and be readily available for the execution of biochemical functions. We thus propose that a quality-control network, termed "metabolostasis", has evolved to regulate the storage and retrieval of aggregation-prone metabolites. Such a system should control metabolite concentration, subcellular localization, supramolecular arrangement, and interaction in dynamic environments, thus enabling normal cellular physiology, healthy development, and preventing disease onset. The paradigm-shifting concept of metabolostasis calls for a reevaluation of the traditional view of metabolite storage and dynamics in physiology and pathology and proposes unprecedented directions for therapeutic targets under conditions where metabolostasis is imbalanced.

6.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502079

RESUMO

The formation of amyloid-like structures by metabolites is associated with several inborn errors of metabolism (IEMs). These structures display most of the biological, chemical and physical properties of protein amyloids. However, the molecular interactions underlying the assembly remain elusive, and so far, no modulating therapeutic agents are available for clinical use. Chemical chaperones are known to inhibit protein and peptide amyloid formation and stabilize misfolded enzymes. Here, we provide an in-depth characterization of the inhibitory effect of osmolytes and hydrophobic chemical chaperones on metabolite assemblies, thus extending their functional repertoire. We applied a combined in vivo-in vitro-in silico approach and show their ability to inhibit metabolite amyloid-induced toxicity and reduce cellular amyloid content in yeast. We further used various biophysical techniques demonstrating direct inhibition of adenine self-assembly and alteration of fibril morphology by chemical chaperones. Using a scaffold-based approach, we analyzed the physiochemical properties of various dimethyl sulfoxide derivatives and their role in inhibiting metabolite self-assembly. Lastly, we employed whole-atom molecular dynamics simulations to elucidate the role of hydrogen bonds in osmolyte inhibition. Our results imply a dual mode of action of chemical chaperones as IEMs therapeutics, that could be implemented in the rational design of novel lead-like molecules.


Assuntos
Amiloide/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Adenina/química , Adenina/metabolismo , Amiloide/química , Amiloide/metabolismo , Dimetil Sulfóxido/análogos & derivados , Simulação de Dinâmica Molecular , Polimerização/efeitos dos fármacos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
ACS Nano ; 15(7): 11854-11868, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34213307

RESUMO

A major risk factor for Gaucher's disease is loss of function mutations in the GBA1 gene that encodes lysosomal ß-glucocerebrosidase, resulting in accumulation of glucosylceramide (GlcCer), a key lysosomal sphingolipid. GBA1 mutations also enhance the risk for Parkinson's disease, whose hallmark is the aggregation of α-synuclein (αSyn). However, the role of accumulated GlcCer in αSyn aggregation is not completely understood. Using various biophysical assays, we demonstrate that GlcCer self-assembles to form amyloid-like fibrillar aggregates in vitro. The GlcCer assemblies are stable in aqueous media of different pH and exhibit a twisted ribbon-like structure. Near lysosomal pH GlcCer aggregates induced αSyn aggregation and stabilized its nascent oligomers. We found that several bona fide inhibitors of proteinaceous amyloids effectively inhibited aggregation of GlcCer. This study contributes to the growing evidence of cross-talk between proteinaceous amyloids and amyloid-like aggregates of metabolites accumulated in diseases and suggests these aggregates as therapeutic targets.


Assuntos
Doença de Gaucher , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Glucosilceramidas/metabolismo , Amiloide/metabolismo , Doença de Parkinson/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34099562

RESUMO

High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated ß-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between ß-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Homocisteína/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Homocisteína/química , Humanos , Espectrometria de Mobilidade Iônica , Cinética , Camundongos Transgênicos , Modelos Biológicos , Polifenóis/farmacologia , Saccharomyces cerevisiae/metabolismo
9.
Trends Biochem Sci ; 46(5): 391-405, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33423939

RESUMO

Protein misfolding and aggregation are associated with human diseases and aging. However, microorganisms widely exploit the self-propagating properties of misfolded infectious protein particles, prions, as epigenetic information carriers that drive various phenotypic adaptations and encode molecular information. Microbial prion research has faced a paradigm shift in recent years, with breakthroughs that demonstrate the great functional and structural diversity of these agents. Here, we outline unorthodox examples of microbial prions in yeast and other microorganisms, focusing on their noncanonical functions. We discuss novel molecular mechanisms for the inheritance of conformationally-encoded epigenetic information and the evolutionary advantages they confer. Lastly, in light of recent advancements in the field of molecular self-assembly, we present a hypothesis regarding the existence of non-proteinaceous prion-like entities.


Assuntos
Príons , Humanos , Saccharomyces cerevisiae
10.
Trends Microbiol ; 29(3): 251-265, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33041179

RESUMO

In the past two decades, amyloids, typically associated with human diseases, have been described to play various functional roles in nearly all life forms. The structural and functional diversity of microbial 'functional amyloids' has dramatically increased in recent years, expanding the canonical definition of these assembled molecules. Here, we provide a broad review of the current understanding of microbial functional amyloids and their diverse roles, putting the spotlight on recent discoveries in the field. We discuss their functions as structural scaffolds, surface-tension modulators, adhesion molecules, cell-cycle and gametogenesis regulators, toxins, and mediators of host-pathogen interactions. We outline how noncanonical amyloid morphologies and sophisticated regulatory mechanisms underlie their functional diversity and emphasize their therapeutic and biotechnological implications and applications.


Assuntos
Amiloide/metabolismo , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Amiloide/química , Amiloide/genética , Animais , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...